
Datomic with Rich Hickey-

Definitions

Value : an immutable magnitude . . . or immutable composite thereof .

Identity : a putative entity we associate with a series of causally related
values (states) over time .

State : Value of an identity at a moment in time .
Time : Relative beforeIafter ordering of causal values .

In datomic
,
an entire database can be a value to the application .

Epochal time can be achieved
" in-memory

"

using : persistent data structures , trees
and structural sharing .

The traditional way of programming against a DB is to program against a DB connection
Transactions
- are a property of the connection .
- in relational DB s have atleast a basis of an unknown but consistent state.
- in noSQL stores have no basis at all .

Databases conflate identity and value; and collapses time .

How should we think about Database state ? as an expanding value ; an accretion
of immutable facts .

Accretion :
- Root per transaction (as in in- memory structural sharing) does not work for DBS.

i. crossing processes and time
• a DB will have to maintain every root
• cannot do global G C .
- Instead, the latest value of the database is the whole database; latest value
contains the past values as well .

Facts :
- factum : something which happened .
- always has a time d#
- atomic
- in Datomic, represented by Datom . E/A1 V/Transaction

Process :
- assertions and retractions of facts
- similar to CQ RS event - logs
- it is a primitive representation of novelty

state Implementation
- SSTables , like BigTable
- sorted set of facts
- compaction of SSTables into disk creates persistent tree structures .

Transactions and Indexing

Process Perception

Architecture

- the core of the architecture lives in the application server .
- storage is commoditiesed - can be a relational database , DynamoDB, etc. - which
makes storage independently scalable .
- reads are horizontally scalable - just add more application servers .
- Transaction co - ordination is the sole concern of the D.atomic server . Hence,
called Trans actors .
- Transactors do not have query load; only write loads .
- Indexing , although shown as part of the Transactor box, can live on a
separate machine .
- Transactors reflect back transactions to Peers , so all peers are maintaining
the same live index .

- Transactors performs periodic indexing in the background .
- Indexing creates garbage . Transactor is responsible for storage GC .

Memory Index
- Persistent sorted set .
- Pluggable comparators .
- EAVT and AEVT sort always maintained .
- AVET and VAET are the other sorts .

Storage
- Two things stored in storage :

• Log of tx asserts Iretracts (in
tree) .

• Covering indices (trees)
- storage system Requirements
consistent Read
conditional Put

DB Value

This is how the database looks in memory.

this is
mutable
↳

everything
else is
immutable

Index storage set of trees, one for each sort.↳

Transaction function
f- (db, orgs . . .) → tx - data

↳ database as a value .

tae - data : assert I retract Itx- fn (ang s . . .)

expand and splice until everything is just assertIretracts .

Peers
- directly access storage service .
- own query engine on each peer .
- Two tier cache :

segments (off- heap / men cached)
Datoms w/object values (on heap)

Datalog
- subset of Prolog .
- set- oriented, guaranteed termination .
- db t rules t queries
- database is reified; not implicit as in SQL .
- you can call your own code with expression

clauses .

everything is
either a list or
a map.

example
query :

all joins are implicit .

